The mass equation law for binding of a protein P to its DNA

$$D_{\text{free}} + P_{\text{free}} \stackrel{\longrightarrow}{\leftarrow} DP \qquad K_1 = \frac{D_{\text{free}} \cdot P_{\text{free}}}{DP}$$

binding of the first proteins with the dissociation constant K_1

 $D_{\rm free}$, concentration free DNA; $P_{\rm free}$, concentration free protein

binding constant
$$K_{\rm B} = \frac{1}{\text{dissociation constant } K_{\rm D}}$$

How fast is binding or dissociation

 k_{off} in s⁻¹ is the reaction rate constant for dissociation k_{on} in M⁻¹ s⁻¹ is the reaction rate constant for binding

relation to the equilibrium dissociation constant

life time of the complex

 $\frac{d[AB]}{dt} = k_{on} \cdot [A] \cdot [B] - k_{off} \cdot [AB]$

rate equation for complex formation, can be solved but it is already difficult

k_{on} cannot be higher than 10⁸ - 10⁹ M⁻¹ s⁻¹ for a diffusion controlled reaction

What is the meaning of the dissociation constant for binding of a single ligand to its site?

- 1. K_d is a concentration and has units of mol per liter
- 2. K_d gives the concentration of ligand that saturates 50% of the sites (when the total sit concentration is much lower than K_D)
- 3. Almost all binding sites are saturated if the ligand concentration is 10 x K_{d}
- 4. The dissociation constant K_d is related to Gibbs free energy ΔG by the relation $\Delta G = -R T \ln(K_d)$

Our energy and time coordinate system

К (М)	concentration scale	ΔG (kcal/mol)	k _{off} (s-1)	complex life time	Binding interaction
			for k		
10	1 mM	-4.1	10	10 ms	ion-DNA ion-protein
10	0.1 mM	-5.5	10	0.1 sec	
10	10 µM	-6.8	1	1 sec	enzyme-ligand (weak)
10	1 uM	-8.2	10	10 sec	protein-DNA, unspecific
10	0.1 µM	-9.5	10	100 sec	enzyme-ligand (strong)
10	10 nM	-10.9	10	16.7 min	
10	1 nM	-12.3	10	2.8 hours	protein-DNA specific
10	0.1 nM	-13.6	10	28 hours	
10	10 pM	-15	10	11.6 days	antibody-antigen
10	1 pM	-16.4	10	116 days	

Biophysical Concepts and Theoretical Descriptions

Oct 16: Intro protein-DNA/RNA interactions Oct 23: The energy, length and time coordinate system Oct 30: Diffusion (Fabian Erdel) Nov 6: Kinetics Nov 13: Essentials of protein-DNA/RNA interactions

. . .

How to link in vitro measurements to interactions in the cell?

The mammalian cell nucleus

The cell is a very crowded place (David Goodsell)

from left to right: cell surface

cytoplasm

synthesis of proteins from the endoplasmic reticulum

Golgi apparatus, coated vesicle mitochondrion nucleus

proteins: blue DNA and RNA: red and orange lipids: yellow carbohydrates: green Ribosomes: magenta

Concentration of proteins and DNA in the nucleus

DNA	RNA	Protein
$\sim 15 \text{mg/ml}$ (6pg DNA per	~11 mg/ml (5-25pg RNA	$\sim 106-215 \text{ mg/ml}$ in various
cell, ¹⁹ nucleus ~1/10	per cell, ²⁵ 18% in	regions of the
of cell volume 4x10 ⁻	nucleus, ²⁶ nucleus	nucleus.27
⁹ cm ³ typical) ²⁰	$\sim 1/10$ of cell	~108mg/ml (6pg DNA per
~18.5mg/ml (56mM	volume 4×10^{-9} cm ³	cell, ²⁰ protein mass
nucleosome	typical).20	72X DNA mass and
concentration, 21 200	~12-15mg/ml (27.1-	cell volume 4x10 ⁻⁹
bp/nucleosome,	33.1pg/cell, ²⁴ 18%	cm3 typical). ²⁰
2bases/bp,1Mbase/3	in nucleus, ²⁶	~200-300mg/ml in E.coli. ²⁸
30g. ²²	nucleus $\sim 1/10$ of	
~19 mg/ml ²³	cell volume 4x10 ⁻⁹	
~20-31 mg/ml (8.1-	cm ³ typical). ²⁰	
12.5pg/cell, ²⁴		
nucleus $\sim 1/10$ of cell		
volume 4×10^{-9} cm ³		
typical) ²⁰		

Concentration of ions in the nucleus

- ► ~0.1 M K⁺/Na⁺ (K⁺ > Na⁺)
- ▶ 0.5-1 mM Mg²⁺
- ▶ low µM values of Ca²⁺

▶ 3.1 times higher apparent viscosity than water measured for the mobility of GFP (D = $25 \ \mu m^2 \ cm^{-1}$)

inorganic cations are significantly more abundant than the corresponding mobile anions nucleic phosphate groups and negative protein charges are in excess of the positive protein charges

▶ high Cl⁻ concentration (in vitro!) can significantly disturb proteinprotein or protein-DNA interactions

Macromolecule interactions in the nucleus are different from in vitro conditions

protein surfaces

the small particles

nucleus envrionment

Measuring binding via protein mobility has a problem: many things affect the observed mobility

